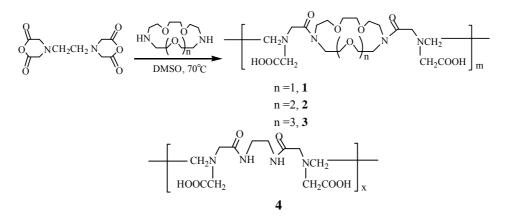
## EDTA-type Polymer Based on Diazacrown Ether as the Solubilizer of Barium Sulfate to Water

Bo ZHOU, Jian Zhang LI, Chun Hong HE, Sheng Ying QIN\*

The Faculty of Chemistry, Sichuan University, Chengdu 610064

**Abstract:** The EDTA dianhydride reacted with diazacrown ethers to obtain the water-soluble EDTA-diazacrown ether polymers  $1\sim3$ . The effects of crown ether ring in the polymer chains including its cavity size on the solubilization of barium sulfate to water were investigated by comparison with the crown ring-free analogue 4. The result shows that the polymer 2 is the efficient solubilizer of BaSO<sub>4</sub> and the highest solubilization efficiency of the BaSO<sub>4</sub> to water is up to 72.5%.

Keywords: EDTA-diazacrown ether polymers, barium sulfate, solubilization.


The formation and the elimination of barium sulfate-scale have attracted increasing attention for a long time. For example, the use of seawater as injection fluid in oil-producing locations often leads to clogging of wells as a result of BaSO<sub>4</sub>-scale formation<sup>1</sup>. There are some reports on the eliminating of BaSO<sub>4</sub>-scale of injection water pipe in oil-producing process, but the most of solubilizers used are difficultly to prepared or their solubilization efficiency is  $low^{2, 3}$ . For instance, the dissolution efficiency of BaSO<sub>4</sub> by [2, 2, 2] cryptand is 100%, however, the rate of dissolution equilibrium is very slow due to its insolubility<sup>4</sup>. In order to improve the hydrophilic capacity of the compelexants of barium cation and its solubility rate, we designed and prepared EDTA–type diazacrown ether polymers  $1\sim3$ , which possess good solubility in water, by the reaction of EDTA dianhydride with diazacrown ether. The effects of crown ether in the polymer chains on the solubilization of BaSO<sub>4</sub> to water were investigated as compared with the crown ring-free analogue, EDTA-ethylenediamine polymer **4**. The synthetic route of  $1\sim3$  and the structure of analogue **4** are shown in **Scheme 1**.

Compounds EDTA dianhydride<sup>5</sup> and diazacrown ethers<sup>6</sup> were prepared according to the published procedures, the EDTA-ethylenediamine polymer **4** was supplied by our laboratory. The infrared spectra were recorded on a Nicolet-1705X spectrometer. <sup>1</sup>H NMR spectra were recorded on a Bruker AC-200MHz spectrometer using (CH<sub>3</sub>)<sub>4</sub>Si as internal standard.

A solution of equal mole diazacrown ethers in dry DMSO was added to a solution of EDTA dianhydride in dry DMSO with vigorous stirring and under  $N_2$  atmosphere. The mixture was stirred at 70°C for 12 h. Then the reaction mixture was cooled and poured into

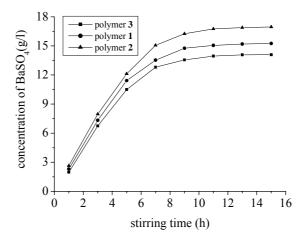
<sup>\*</sup> E-mail: qin-shengying@163.com





acetone to separate the precipitate. The precipitate was filtrated and washed with cold DMSO and acetone, dried in vacuum to give  $1 \sim 3$ .

**1:** light brown solid; softening point 106°C, yield 92.9%. [ $\eta$ ] 0.11 (H<sub>2</sub>O; 25°C). IR (KBr, cm<sup>-1</sup>): 3430 (OH), 1725 (COOH), 1632 (NC=O), 1129 (C-O-C). <sup>1</sup>HNMR (D<sub>2</sub>O,  $\delta$  ppm) 2.55~2.79 (m, 12H, NCH<sub>2</sub>), 3.21 (s, 4H, NCH<sub>2</sub>COOH), 3.46~3.60 (m, 16H, OCH<sub>2</sub> and COCH<sub>2</sub>N).


**2:** light brown solid; softening point 97.5°C, yield 90.0%. [η] 0.12(H<sub>2</sub>O; 25°C). IR (KBr, cm<sup>-1</sup>): 3412(OH), 1727(COOH), 1640(NC=O), 1120(C-O-C). <sup>1</sup>HNMR (D<sub>2</sub>O, δ ppm) 2.69~2.85(m, 12H, NCH<sub>2</sub>), 3.25(s, 4H, NCH<sub>2</sub>COOH), 3.46~3.53(m, 20H, OCH<sub>2</sub> and COCH<sub>2</sub>N).

**3:** light brown solid; softening point 115°C, yield 92.0%. [ $\eta$ ]0.13 (H<sub>2</sub>O; 25°C). IR (KBr, cm<sup>-1</sup>): 3440 (OH), 1725 (COOH), 1634 (NC=O), 1117(C-O-C). <sup>1</sup>HNMR (D<sub>2</sub>O,  $\delta$  ppm) 2.69~2.81 (m, 12H, NCH<sub>2</sub>), 3.23(s, 4H, NCH<sub>2</sub>COOH), 3.44~3.50 (m, 24H, OCH<sub>2</sub> and COCH<sub>2</sub>N).

The characteristic viscosity coefficients( $[\eta]$ ) of polymers 1~3 are nearly the same and indicate that polymerization reaction can easily proceed and be repeated. As a matter of fact, the polymers 1~3 may be water-soluble oligomer. The polymers 1~3 possess certain rigidity due to the big molecular size of diazacrown ethers and EDTA dianhydride.

Scheme 1 shows that m represents the polymerization degree of polymer, *i.e.* the polymer containing m chain units bearing aza-crown ring should load m BaSO4 molecules in theory. So the mole of solubilized  $BaSO_4$  by per mole chain unit in polymer was regarded as  $BaSO_4$  dissolving efficiency. If per chain unit containing aza-crown ring can load one  $BaSO_4$ , the  $BaSO_4$  dissolving efficiency of the polymers is 100%.

The solubilization capabilities of the polymers were determined by known equipment and method<sup>2</sup>, 5 mmol BaSO<sub>4</sub> was added to a solution of 0.5 mmol chain unit of polymer dissolved in 5 mL water, then the mixture solution was adjusted to pH=10 by the addition of tetrabutyl ammonium hydroxide. The mixture was stirred vigorously at 20°C. After centrifugal separating, the concentration of barium ion in the filtrate containing Ba(II) complexant was determined by ICP. The result was shown in **Figure 1** and **Table 1**.



**Figure 1** The plots of the accumulated concentration of  $Ba^{2+}$  *versus* the stirring time for the mixture of the polymers and  $BaSO_4$ 

Condition: complexant 0.1 mol/L, pH 10 and temperature 20°C

**Figure 1** shows that the accumulated concentration of  $Ba^{2+}$  increases with the increase of the stirring time of mixture of the polymers and  $BaSO_4$ . The result reveals that the longer the stirring time is, the higher the accumulated concentration of  $Ba^{2+}$  in water is. However, after stirring for 13 h, the accumulated concentration of  $Ba^{2+}$  almost unchanged, and the  $BaSO_4$  reached basically dissolution equilibrium. The result shows that the rate of the  $BaSO_4$  reached dissolution equilibrium is faster than that of literature<sup>2</sup> reported.

The effect of solution acidity on the solubilization of  $BaSO_4$  was investigated with the polymer **3**. When the pH value of **3** is 7.0, 9.0, 10.0, 11.0, the dissolved  $BaSO_4$  was 0.03, 10.72, 14.08 and 14.09g/L, respectively. The result shows that the dissolution of  $BaSO_4$  by polymer **3** is of high efficiency under pH  $\ge 10$ , and that the negative ion of the deprotonated carboxylic group(COO<sup>-</sup>) which affords the cooperation with the crown rings and plays a more important role than that of the amido carbonyl group(C=O) on the polymer chain for solubilizing BaSO<sub>4</sub>.

| Complexant | Dissolved BaSO <sub>4</sub> (g/L) | Efficiency <sup>b</sup> (%) |
|------------|-----------------------------------|-----------------------------|
| None       | 0.0019                            |                             |
| EDTA       | 6.21                              | 26.6                        |
| 1          | 15.19                             | 65.2                        |
| 2          | 16.89                             | 72.5                        |
| 3          | 14.08                             | 60.4                        |
| 4          | 5.83                              | 25.0                        |

**Table 1** The dissolution efficiency of  $BaSO_4$  by aqueous solutions of the complexantes  $1-4^a$ 

<sup>a</sup> condition: complexant 0.1 mol/L, stirring 13 h, pH 10 and temperature 20°C

<sup>b</sup> efficiency: mole of dissolved BaSO<sub>4</sub> to per mole of chain unit of polymer

## Bo ZHOU et al.

**Table 1** shows that the solubilizing  $BaSO_4$  efficiencies of EDTA-diazacrown ether polymers 1~3 are much higher than that of crown ring-free analogue 4. The highest solubilization efficiency of polymer 2 is up to 72.5%. It may be due to the cavity size of the crown ring in polymer 2 matches well with the diameter of barium ion. The poor efficiency of polymer 4 for solubilizing  $BaSO_4$  may be for that the acyclic polymer 4 only contains EDTA structure unit.

In conclusion, the investigated result shows that the crown rings in polymers  $1 \sim 3$  play a major role for the solubilizing BaSO<sub>4</sub> to water.

## Acknowledgment

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant No: 29572050).

## References

- 1. D. J. Weintrm, J. C. Cowan, J. Petrol. Technol., 1967, 1381.
- 2. F. de Jong, A. van Zon, D. N. Reinhoudt et al., Recl. Trav. Chim. Pays-Bas, 1983, 102, 164.
- 3. M. L. Fu, Zuancaigongyi (Drill. Prod. Technol., Chinese), 1999, 22(1), 53.
- 4. B. Dietrich, J. M. Lehn, J. P. Sauvage, Tetrahedron Lett., 1969, 2885.
- 5. W. J. Lennon, US Pat. 3497535, 1970.
- 6. H. Maeda, S. Fvrvyoshi, M.Okahara, et al., Bull. Chem. Soc. Jpn., 1983, 56(10), 3073.

Received 3 December, 2003